THE REACTION OF A α -TOCOPHEROL MODEL COMPOUND WITH KO₂, A NEW OXIDATION PRODUCT OF 6-HYDROXY-2,2,5,7,8-PENTAMETHYLCHROMAN¹

Shigenobu Matsumoto and Mitsuyoshi Matsuo*

Tokyo Metropolitan Institute of Gerontology 35-2 Sakaecho, Itabashiku, Tokyo 173, JAPAN

(Received in Japan 28 March 1977; received in UK for publication 28 April 1977)

Recently, the production of superoxide anion $(\overline{O_2})$ in a variety of biological systems has been known.² From the view of biological protection against $\overline{O_2}$, the reaction of \checkmark -tocopherol with $\overline{O_2}$ is of great interest. Nishikimi and Machlin examined the reaction of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, a \checkmark -tocopherol model compound, with $\overline{O_2}$ generated from a xanthine-xanthine oxidase system, obtaining 2-hydroxy-2-methyl-4-(3,5,6-trimethylbenzoquinone-2yl)butanoic acid.³ We wish to report the reaction of 6-hydroxy-2,2,5,7,8-pentamethylchroman (<u>1</u>) with KO₂, as a source of $\overline{O_2}$, in tetrahydrofuran (THF). This may be a more suitable model reaction than that in an aqueous solution, because \checkmark -tocopherol occurs in such hydrophobic environments of tissues as cell membrane.

<u>1</u> was reacted at 0° for 8 hr with three equimolar of KO_2 suspended in THF. A product (<u>2</u>), mp 104-5°, colorless needles, was obtained in a 20% yield. It has; Mass: m/e(M⁺) 236, UV: \land (MeOH) (nm) 249s(\leq 5500), 327(\leq 2800), IR: \checkmark (KBr) (cm⁻¹) 3420, 1655, 1638, 1578, ¹H-NMR: δ (CDCl₃) (ppm) 1.34(9H,s), 1.50-1.80(2H, m), 1.82(3H,s), 1.99(3H,s), 2.00-2.70(2H,m), 3.50(1H,s), ¹³C-NMR: δ (CDCl₃) (ppm) 11.4(q), 13.6(q), 15.5(t), 25.9(q), 27.3(q), 30.0(q), 31.6(t), 75.6(s), 77.7(s), 103.1(s), 122.1(s), 147.2(s), 165.2(s), 202.6(s).

The molecular ion peak of $\underline{2}$ (m/e236) indicates the introduction of an oxygen atom into $\underline{1}$ (m/e220). The UV and IR spectra suggest the presence of a conjugated cyclohexadienone and a hydroxyl group in the structure of $\underline{2}$. In the ¹H-NMR spectrum, there are two methyl signals attaching to sp² carbons (1.82 and 1.99 ppm) and a methyl signal corresponding to three methyl groups (1.34 ppm). By addition of Eu(fod)₃, the signal of a methyl group at 1.34 ppm shifted greatly to lower field. In the ¹³C-NMR spectrum, the peaks of a ketonic (202.6 ppm), four quaternary sp² (165.2-103.1), two oxygenated quaternary (77.7 and 75.6) and two methylene carbons (31.6 and 15.5) in addition to the ones of five methyl groups are observed. The position of a hydroxylated carbon in <u>2</u> was determined by the examination of the NMR spectra of deuterium-labeled <u>2</u>. In the NMR spectra of the labeled <u>2</u> derived from 5-CD₃-<u>1</u>,⁴ the intensity of a singlet ¹H-peak at 1.34 ppm decreases from 9H to 6H and a ¹³C-peak for a methyl carbon at 30.0 ppm can not be found. Since 7,8-unlabeled carbons in 5-CD₃-<u>1</u> were converted to two methyl carbons attaching to two sp² carbons in 2, it is apparent that the hydroxylation occured at 5-position of 1. Thus, the structure is depicted as 2 in the Figure.

The reaction mechanism of the formation of 2 remains obscure. But when the reaction was carried out under an oxygen atmosphere, 2 yielded almost quantitatively. Presumably, an oxygen atom of a hydroxyl group in 2 may come from molecular oxygen. If 0_2 accept a proton from <u>1</u>, perhydroxyl radical in its protonated form will dismutate to give molecular oxygen and H_2O_2 .⁵ The H_2O_2 will react with O_2 to give molecular oxygen, too.⁶ This seems to be similar to Moro-oka and Foote's findings that oxygen was evolved during the oxidation of 9,10-dihydroxyphenanthrene and 3,5-di-t-butylcatechol with KO2 and that molecular oxygen took part in the oxidation.⁷ In the oxidation of $\frac{1}{1}$, a carbanion (3) seems to be important because 2 also arose from 1 on a t-BuOK-catalyzed oxidation in t-BuOH.⁸ Interestingly, 2,4,6-tri-t-butylphenol affords a hydroperoxycyclohexadienone in a t-BuOK-t-BuOH oxidation system.⁹ Probably, 2 is formed via a hydroperoxide (4). Although the protonation of 0_2 is assumed as the initial step of the reaction, the hydrogen abstraction with 0_2 can not be ruled out. A hypothetical scheme is shown below;

References

- 1. TMIG-I No.9.
- 2. I.Fridovich, in "Free Radicals in Biology", W.A.Pryor ed. Vol.1, Academic
- Press, New York, 1976, p.239.
 M.Nishikimi and L.J.Machlin, Arch.Biochem.Biophys., 170, 684 (1975)
 5-CD₃-1 was prepared according to the method of S.Urano and M.Matsuo; Lipids, 11, 380 (1976).
 D.Behar, G.Czapsky, J.Raban, L.M.Dorfman and H.A.Schwarz, J.Phys.Chem., 74,
- 3209 (1970).

- F.Haber and J.Weiss, Proc.Roy.Soc.London, Ser.A, 147, 332 (1934).
 Y.Moro-oka and C.S.Foote, J.Amer.Chem.Soc., 98, 1510 (1976).
 S.Matsumoto and M.Matsuo, unpublished data. The yield of <u>2</u> was about 50%.
- 9. A.Nishinaga,T.Itahara,T.Shimizu,and T.Matsuura, Tetrahedron Lett., 2467 (1976).